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Haynes 556

Introduction

Haynes 556 alloy has good oxidation resistance, fabricability, excellent high-temperature
strength and effective resistance to sulfidizing, carburizing and chlorine-bearing environments at high
temperatures. The understanding of mechanical and microstructural behavior during high
temperature deformation is very important for the forming processes of this material. In this
investigation, flow behavior of Haynes 556 was studied by conducting compression tests over a range
of temperatures and strain rates. Constitutive relations were determined from the flow behavior and a
dynamic material modeling for this alloy was performed. Thus, the optimum processing condition in
terms of temperature and strain rate was determined. Microstructural changes during high
temperature deformation were also characterized to aid process design engineers to select processing
conditions which results in desired microstructure.

Experimental Procedure

The material used in this investigation was commercially available Haynes 556 wrought bars
with about 15 mm diameter in annealed condition. The typical microstructure of the as-received
material consists of equiaxed grains with an average grain size of 45.3 gLim and much twinning as
shown in Figure 1. The chemical composition is as follows (wt%, bal. Fe):

C S Mn Si Cr B Al Co Ni
0.10 <.003 0.93 0.39 21.89 <.002 0.16 18.04 22.07

W Zr Ta Mo N Cb La P
2.28 0.014 0.61 2.79 0.17 0.10 0.049 <.007

Cylindrical compression test specimens with a diameter of 12.7 mnm and a height of 15.9 mm
were machined from the bars. Isothermal compression tests were conducted in vacuum to a true
strain of 0.8 on an MTS testing machine. The test matrix was as follows:

Temperature, C (F): 950 (1742), 1000 (1832), 1050 (1922), 1100 (2012), 1150 (2102), 1175
(2147), and 1200 (2192)

Strain rate, s-1: 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5 and 20.

Load and stroke data from the tests were acquired by a computer and later converted to true
stress-true strain curves. Immediately after the compression test, the specimens were quenched with
forced helium gas in order to retain the deformed microstructure. Longitudinal sections of the
specimens were examined by optical microscopy. The photomicrographs presented here were taken
from the center of the longitudinal section of the specimens.

Results

Table 1 is a list of the figures, test conditions and the observed microstructures. The true
stress-true strain flow curves with selective corresponding deformed microstructure are shown in
Figure 2 to Figure 57. True stress versus strain rate was plotted in log-log scale in Figure 58 at a true
strain of 0.5. The slope of the plot gives the strain rate sensitivity m, which is not constant over the
ranges of strain rate and temperature tested. Log stress vs. l/T at the same true strain is shown in
Figure 59. A processing map at this strain was developed and is shown in Figure 60. The optimum
processing condition from the map can be obtained by selecting the temperature and strain rate
combination which provides the maximum efficiency in the stable region. This condition is
approximately 1106 C and 0.001 s-1 for this material.
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Table 1. List of figures, testing conditions and microstructural observations for Haynes 556

Figure Temperature Strain Rate Page
No C (F) s-I Microstructure No

Optical Microscopy
I As-received Equiaxed grains with an average grain size of 45.3 4

pin some multiple twins.
2 950 (1742) 0.001 Severely deformed grains with very few (-25%) 5

dynamically recrystallized (DRX) grains, some
neckdacing.

3 950(1742) 0.01 6
4 950 (1742) 0.05 7
5 950 (1742) 0.1 Mostly elongated grains with some necklacing and 8

twinning.
6 950 (1742) 0.5 9
7 950(1742) 1 10
8 950(1742) 5 Same as above, but with higher amounts of both 11

recrystallied grains and necklacing.
9 950(1742) 20 Same as above, with still higher amounts (-6W"0%) of 12

DRX grains and necklacing.
10 1000(5562) 0.001 -50% DRX equiaxed grains with an average grain 13

size of -4.5 pm, along with deformed grains with
very small amount of necklacing.

11 1000(5562) 0.01 Same as above, but with higher amount (--65%) of 14
recrystallized grains and more necklacing.

12 1000 (5562) 0.05 15
13 1000(5562) 0.1 16
14 1000(5562) 0.5 Mostly elongated grains (aspect ratio of 1:3) with the 17

onset of necklacing at few grain boundaries, etch
pits.

15 1000(5562) 1 Same as above. 18
16 1000 (5562) 5 19
17 1000 (5562) 20 -90% recrystallized very fine subgrains within the 20

deformed original grains.
18 1050 (1922) 0.001 --60% recrystallized equiaxed grains with a non- 21

uniform grain size (average - Swn).
19 1050 (1922) 0.01 22
20 1050(1922) 0.05 -50%recrystallized equiaxed subgrains with a non- 23

uniform grain size (average -7.5Wpm) within the
deformed original grains.

21 1050(1922) 0.1 ________________24

22 1050 (1922) 0.5 25
23 1050 (1922) 1 Same as above, but less amount of subgrains with an 26

average grain size of -6pm.
24 1050 (1922) 5 -90% recrystallized grains, majority (-80%) of 27

which are very fine in size.
25 1050(1922) 20 Same as above, but the proportion of very fine grains 28

is higher (--90/.).
26 1100 (1212) 0.001 100% recrystallized equiaxed grains with a wide 29

range of grain size (average size -28 pm), some
twins mostly in larger grains.

27 1100(1212) 0.01 Same as above, with smaller size equiaxed grains, 30
__1_t 0.05__ _ and much less twinning. 31

28 1100 (1212) 0.05 31
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29 1100(1212) 0.1 -IO0% fnerecrystallized grains with an avera 32
size of 13.6 p^• some twinning.

30 1100(1212) 0.5 33
31 1100(1212) 1 -100% recystallized equiaxed fine grains. 34
32 1100(1212) 5 35
33 1100(1212) 20 -100% recrystallized grains with a non-uniform size 36

(average -9.7 pm), some wrain growtIL

34 1150(2102) 0.001 100% recrystallized equlaxed grains with larger 37
grain size, twins in some of the larger grains, much
more gramn8rwh

35 1150(2102) 0.01 38
36 1150 (2102) 0.05 39
37 1150(2102) 0.1 40
38 1150(2102) 0.5 100% recrystallized equiaxed non-uniform sized 41

grains with multiple twins present in both small and
large grains.

39 1150(2102) 1 42
40 1150(2102) 5 Same as above. 43
41 1150(2102) 20 Same as above, but less amount of twinning. 44
42 1175 (2147) 0.001 Same as in Figure 34, but with a larger grain size 45

and less amount of twinning.
43 1175(2147) 0.01 -100% recrystallized and grown grains with 46

multiple twins and some fine intragranular
precipitates.

44 1175 (2147) 0.05 Same as above, but the average grain size is smaller. 47
45 1175(2147) 0.1 48
46 1175(2147) 0.5 49
47 1175(2147) 1 Same as above, but the average grain size is still 50

smaller.
48 1175(2147) 5 51
49 1175(2147) 20 Similar to Figure 44. 52
50 1200 (2192) 0.001 100% recrystallized and grown grains with an 53

average grain size of -64 gin.
51 1200 (2192) 0.01 54
52 1200 (2192) 0.05 55
53 1200(2192) 0.1 100% recrystallized and grown grains with an 56

average grain size of 25.9 Wn, twins in some grains.
54 1200 (2192) 0.5 57
55 1200 (2192) 1 100% recrystallized equiaxed grains with a large 58

grain size variation, very few twins.
56 1200(2192) 5 Same as above, but with less amount of twinnng. 59
57 1200(2192) 20 1000 recystallized equiaxed grains withanaverage 60

I grain size of -24.6 pm.
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Figure 1. As-received microstructure of Haynes 556.
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Figure 2. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 0.001 s-.
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Figure 3. True stress-true strain curve, 950 C and 0.01 s- 1 .
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Figure 4. True stress-true strain curve, 950 C and 0.05 s-1.
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Figure 5. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 0.1 s-1.
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Figure 6. True stress-true strain curve, 950 C and 0.5 s- 1 .

9



500 , , ,

Haynes 556

400

b 300

L.

ý 200

I--

100 Temperature: 950 C

Strain Rate: 1 .0 a-'

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 7. True stress-true strain curve, 950 C and 1 s- 1.
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Figure 8. True stress-true strain curve and an optical micrograph from the center of the compressed

sample cut through the compression axis, 950 C and S s-1.
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Figure 9. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 950 C and 20 s-1.
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Figure 10. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 0.001 s-.
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Figure 11. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 0.01 s- 1.
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Figure 12. True stress-true strain curve, 1000 C and 0.05 s-1.
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Figure 13. True stress-true straincurve, 1000 C and 0.1 s-1.
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Figure 14. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 0.5 s- 1.
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Figure 15. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and I s- 1.
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Figure 16. True stress-true strain curve, 1000 C and 5 s-1 .
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Figure 17. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1000 C and 20 s-1.
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Figure 18. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1050 C and 0.001 s- 1.
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Figure 19. True stress-true strain curve, 1050 C and 0.01 s-1 .

22



300
Haynes 556

250

n 200

" 150

a')
S100

50 Temperature: 1 050 C

Strain Rate: 0.05 a-'

0 1i , , I , I * I i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 20. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1050 C and 0.05 s-1 .
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Figure 21. True stress-true strain curve, 1050 C and 0.1 s-1.
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Figure 22. True stress-true strain curve, 1050 C and 0.5 s- 1 .
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Figure 23. True stress-true strain curve and an optical micrograph from the center of the compressed

sample cut through the compression axis, 1050 C and I s-1 .
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Figure 24. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1050 C and 5 s-.
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Figure 25. True stress-true strain curve and an optical micrograph from the center of the compressed

sample cut through the compression axis, 1050 C and 20 s-1 .
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Figure 26. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1100 C and 0.001 s- 1.
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Figure 27. True stress-true strain curve and an optical mnicrograph from the center of the compressed
sample cut through the compression axis, 1100 C and 0.01 s-1
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Figure 28. True stress-true strain curve, 1100 C and 0.05 s-1 .
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Figure 29. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1100 C and 0.1 s-.
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Figure 30. True stress-true strain curve, 1100 C and 0.5 s1.

33



300

Hoynes 556
250 -

o_ 200

O3 150

: 100

50 Temperature: 1100 C

Strain Rate: 1 .0 a-'

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 31. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 100 C and I s-.
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Figure 32. True stress-true strain curve, I100 C and 5 s7.
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Figure 33. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1100 C and 20 s-1 .
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Figure 34. True stress-true strain curve and an optical micrograph from the center of the compressed

sample cut through the compression axis, 1150 C and 0.00 1 s-1 .
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Figure 35. True stress-true strain curve, 1150 C and 0.01 s-1.
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Figure 36. True stress-true strain curve, 1150 C and 0.05 s-1 .
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Figure 37. True stress-true strain curve, 1150 C and 0.1 s-.

40



300 , ,
Haynes 556

250

r_ 200

p 150

L.

0 100
I-

50 Temperature: 1150 C

Str•fn Rate: 0.5 a-'

0 1- . 1 . -I I , . I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 38. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1150 C and 0.5 s-1.
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Figure 39. True stress-true strain curve, 1150 C and I s-1 .
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Figure 40. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1150 C and 5 s-1.
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Figure 41. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1150 C and 20 s 1 .

44



1(30 0 , •

Haynes 556

80

- 60
CO

J 40 -

I--
20 Temperature: 1175 C

Strain Rate: 0.001 a-'
0 1 1 ' I , • ' ' '

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 42. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1175 C and 0.001 s-.

45



100 , ,

Haynes 556
6Q

0
60

CD
443

20 Temperature: 1175 C

Stratn Rate: 0.01 s-'

0 - . I , I I

0 .0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 43. True stress-true strain curve and an optical micrograph from the center of the compressed

sample cut through the compression axis, 1175 C and 0.01 s-.
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Figure 44. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1175 C and 0.05 s-.
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Figure 45. True stress-true strain curve, 1175 C and 0.1 s-1 .
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Figure 46. True stress-true strain curve, 1175 C and 0.5 s- 1.
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Figure 47. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1175 C and I s-1 .
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Figure 48. True stress-true strain curve, 1175 C and 5 s-.
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Figure 49. True stress-true strain curve and an optical mnicrograph from the center of the compressed
sample cut through the compression axis, 1175 C and 20 s-.
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Figure 50. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1200 C and 0.001 s-1 .

53



100 ,0, • ,

Haynes 556

80

60
en

i--,
(n) 40

20 Temperature: 1200 C

Strafn Rate: 0.01 *-1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

Figure 51. True stress-true strain curve, 1200 C and 0.01 s-1.
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Figure 52. True stress-true strain curve, 1200 C and 0.05 s-1.
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Figure 53. True stress-true Strain curve and an optical micrograph from the center of the compressed
sample cut throughi the compression axis, 1200 C and 0. 1 s- .
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Figure 54. True stress-true strain curve, 1200 C and 0.5 s-1.
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Figure 55. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1200 C and 1 9-.
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Figure 56. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1200 C and 5 s-I.
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Figure 57. True stress-true strain curve and an optical micrograph from the center of the compressed
sample cut through the compression axis, 1200 C and 20 s-1
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Summary

." Compression tests have been performed on Haynes 556 over a wide range of temperatures
and strain rates. The experimental conditions used in this work are representative of those used in
metalforming practices. From the true stress-true strain curves, the flow behavior was characterized
and a processing map indicating the optimum processing condition was generated. This condition is
1106 C and 0.001 s .

The deformed microstructures were characterized from the quenched specimens by optical

microscopy and are presented for selective testing conditions together with the stress-strain curves.

Implementation of Data Provided by the Atlas of Formability

The Atlas of Formability program provides ample data on flow behavior of various important
engineering materials in the temperature and strain rate regime commonly used in metalworking
processes. The data are valuable in design and problem solving in metalworking processes of
advanced materials. Microstructural changes with temperature and strain rates are also provided in
the Bulletin, which helps the design engineer to select processing parameters leading to the desired
microstructure.

The data can also be used to construct processing map using dynamic material modeling
approach to determine stable and unstable regions in terms of temperature and strain rate. The
temperature and strain rate combination at the highest efficiency in the stable region provides the
optimum processing condition. A processing map has been developed in this Bulletin. In some
metalworking processes such as forging, strain rate varies within the workpiece. An analysis of the
process with finite element method (FEM) can ensure that the strain rates at the processing
temperature in the whole workpiece fall into the stable regions in the processing map. Furthermore,
FEM analysis with the data from the Atlas of Formability can be coupled with fracture criteria to
predict defect formation in metalworking processes.

Using the data provided by the Atlas of Formability, design of metalworking processes,
dynamic material modeling, FEM analysis of metalworking processes, and defect prediction are
common practice in Concurrent Technologies Corporation. Needs in solving problems related to
metalworking processes can be directed to Dr. Prabir K. Chaudhury, Manager of Forming
Department, by calling (814) 269-2594.
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